NetXMS Client Library – Programmer’s Guide

NetXMS Client Library
Programmer’s Guide
Version 0.1.18
Copyright © 2003 - 2005 NetXMS Team

Table of Contents

2Table of Contents

3Introduction

4Design of simple client application

6Function Reference

6Initialization and cleanup functions

6NXCInitialize

6NXCShutdown

7Connectivity Functions

7NXCConnect

7NXCDisconnect

8NXCGetServerID

8NXCSetCommandTimeout

8NXCSetEventHandler

9Object Management

9NXCSyncObjects and NXCSyncObjectsEx

9NXCBindObject

10NXCDeleteObject

10NXCFindObjectById

10NXCFindObjectByName

11NXCGetServiceRootObject

11NXCGetTemplateRootObject

12NXCGetTopologyRootObject

12NXCUnbindObject

12NXCWakeUpNode

14Alarm Management

14NXCAcknowlegeAlarm

14NXCDeleteAlarm

14NXCLoadAllAlarms

15NXC_ALARM Structure

16Error Codes

Introduction
Purpose of NetXMS client library (libnxcl) is to provide C language interface to NetXMS server for client applications. Library designed to work in multithreaded environment, and uses threads by itself, so you should take it into consideration.

Design of simple client application

Every client application should start its work with NetXMS client library by calling NXCInitialize. If application needs to receive debug messages from library, callback function for handling these messages can be set with NXCSetDebugCallback. Next step is to establish connection to the server by calling NXCConnect. If connection was established successfully, application can call other library functions to perform various tasks. On exit, application should disconnect from server by calling NXCDisconnect().

Below is an example of client application:

/*

** Send event to server on behalf of “Entire Network” object

*/

#include <nxclapi.h>

//

// Login credentials

//

static TCHAR m_szServer[MAX_DB_STRING] = _T("127.0.0.1");

static TCHAR m_szLogin[MAX_DB_STRING] = _T("guest");

static TCHAR m_szPassword[MAX_DB_STRING] = _T("");

//

// Callback function for debug printing

//

static void DebugCallback(char *pMsg)

{

 printf("*debug* %s\n", pMsg);

}

//

// Send event to server

//

int main(int argc, char *argv[])
{

 DWORD dwResult;

NXC_SESSION hSession;
#ifdef _WIN32

 WSADATA wsaData;

 if (WSAStartup(2, &wsaData) != 0)

 {

 _tprintf(_T("Unable to initialize Windows sockets\n"));

 return 1;

 }

#endif

 if (!NXCInitialize())

 {

 _tprintf(_T("Failed to initialize NetXMS client library\n"));

 }

 else

 {

 NXCSetDebugCallback(DebugCallback);

 dwResult = NXCConnect(m_szServer, m_szLogin,
m_szPassword, &hSession, FALSE);

 if (dwResult != RCC_SUCCESS)

 {

 _tprintf(_T("Unable to connect to server: %s\n"),

 NXCGetErrorText(dwResult));

 }

 else

 {

 NXCSetCommandTimeout(hSession, 5000);

 dwResult = NXCSendEvent(hSession, 1, 1, 0, NULL);

 if (dwResult != RCC_SUCCESS)

 _tprintf(_T("Unable to send event: %s\n"),
 NXCGetErrorText(dwResult));

 NXCDisconnect(hSession);

 }

 }
 return 0;
}
Function Reference
Initialization and cleanup functions

NXCInitialize

Initialize NetXMS client library.

BOOL NXCInitialize(void);

Return value:
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Remarks:

If this function fails, other library functions should not be called.

NXCShutdown

Terminates use of NetXMS client library and performs all necessary cleanup.

void NXCShutdown(void);

Remarks:

It is recommended, but not required to call NXCShutdown when application no longer need to use the library. If NXCShutdown is not called, some resources may not be freed until application terminates.
Connectivity Functions
NXCConnect
Establishes a connection to NetXMS server using provided credentials.
DWORD NXCConnect(
TCHAR *szServer,

TCHAR *szLogin,

TCHAR *szPassword,
NXC_SESSION *phSession,
BOOL bExactVersion

);
Arguments:

	szServer
	Host name or IP address of the server.

	szLogin
	User’s login name.

	szPassword
	User’s password.

	phSession
	Pointer to session handle. On successful connection, session handle will be created and stored into place pointed by phSession. This handle should be used in all subsequent calls to library functions.

	bExactVersion
	TRUE if client library version should exactly match server’s version. If this parameter set to TRUE and client and server versions doesn’t match, NXCConnect will return error.

Return value:

If the function succeeds, the return value is RCC_SUCCESS.

If the function fails, the return value is one of the client library error codes (see Error Codes section for detailed information).

NXCDisconnect

Used to terminate communication session with NetXMS server and destroy session object.

void NXCDisconnect(NXC_SESSION hSession);
Arguments:

	hSession
	Session handle created by NXCConnect().

Remarks:

All object pointers and session handle will became invalid after call to NXCDisconnect and shouldn’t be used.

NXCGetServerID

Get unique ID of connected server.
void NXCGetServerID(NXC_SESSION hSession,

 BYTE *pbsId);

Arguments:

	hSession
	Session handle created by NXCConnect().

	pbsId
	Pointer to 8 byte buffer to receive server ID.

Remarks:

Each NetXMS server has unique 8 byte ID, generated when server starts for a first time. You can use this ID, for example, to distinguish cached object databases from different servers.
NXCSetCommandTimeout

Used to set communication protocol command timeout.

void NXCSetCommandTimeout(NXC_SESSION hSession, DWORD dwTimeout);

Arguments:

	hSession
	Session handle created by NXCConnect().

	dwTimeout
	Communication protocol command timeout in milliseconds.

Remarks:

Default timeout is 10 seconds.

NXCSetEventHandler
Set event handler for given session.
void NXCSetEventHandler(NXC_SESSION hSession,
NXC_EVENT_HANDLER pHandler);
Arguments:

	hSession
	Session handle created by NXCConnect().

	pHandler
	Pointer to new event handler or NULL.

Remarks:

Events are used by client library to asynchronously inform application about various changes in library or server state. For detailed information about events, see “Event Handling” section of this manual.
Object Management

NXCSyncObjects and NXCSyncObjectsEx
Synchronize NetXMS objects between server and client library. NXCSyncObjectsEx differs from NXCSyncObjects by ability to load cached object database from local file before synchronization, and then synchronize only changed objects.
DWORD NXCSyncObjects(NXC_SESSION hSession);

DWORD NXCSyncObjectsEx(NXC_SESSION hSession,

 TCHAR *pszCacheFile);

Arguments:

	hSession
	Session handle created by NXCConnect().

	pszCacheFile
	Cached object database file.

Return value:

If the function succeeds, the return value is RCC_SUCCESS.

If the function fails, the return value is one of the client library error codes (see Error Codes section for detailed information).

Remarks:
All NetXMS objects (nodes, interfaces, subnets, etc.) are instantly synchronized between server and client. To start initial synchronization, you should call NXCSyncObjects(). After successful execution of this function, any changes in the objects on server will be automatically synchronized with client by NetXMS client library in the background.

Please note that execution of this function can take sygnificant amount of time, depending on object database size and communication link speed.

NXCBindObject

Bind one object to another.

DWORD NXCBindObject(NXC_SESSION hSession,

 DWORD dwParentObject,

 DWORD dwChildObject);
Arguments:

	hSession
	Session handle created by NXCConnect().

	dwParentObject
	Unique identifier of parent object.

	dwChildObject
	Unique identifier of child object.

Return value:

If the function succeeds, the return value is RCC_SUCCESS.

If the function fails, the return value is one of the client library error codes (see Error Codes section for detailed information).
NXCDeleteObject

Delete object from database.

DWORD NXCDeleteObject(NXC_SESSION hSession,

 DWORD dwObjectId);
Arguments:

	hSession
	Session handle created by NXCConnect().

	dwObjectId
	Unique identifier of object to be deleted.

Return value:

If the function succeeds, the return value is RCC_SUCCESS.

If the function fails, the return value is one of the client library error codes (see Error Codes section for detailed information).

Remarks:
This function will also delete all child objects if they have only one parent.
NXCFindObjectById
Find object in object database by it’s unique identifier.

NXC_OBJECT *NXCFindObjectById(NXC_SESSION hSession, DWORD dwId);
Arguments:

	hSession
	Session handle created by NXCConnect().

	dwId
	Unique object identifier.

Return value:

If the function succeeds, the return value is pointer to NXC_OBJECT structure.

If the function fails, the return value is NULL. Function can fail if object with given ID does not exist, object database is not synchronized (by NXCSyncObjects function), or session handle is invalid.
Remarks:
Pointer returned by this function is persistent and it's guaranteed to be valid until call to NXCDisconnect() or NXCSyncObjects(). Function implemented as a binary search on sorted array, so it should be fast enough even on large object databases.

NXCFindObjectByName

Find object in object database by it’s name.

NXC_OBJECT *NXCFindObjectByName(NXC_SESSION hSession, TCHAR *pszName);
Arguments:

	hSession
	Session handle created by NXCConnect().

	pszName
	Object’s name or pattern. You can use metacharacters * and ? in pattern.

Return value:

If the function succeeds, the return value is pointer to NXC_OBJECT structure.

If the function fails, the return value is NULL. Function can fail if object with matching name does not exist, object database is not synchronized (by NXCSyncObjects function), or session handle is invalid.

Remarks:
Pointer returned by this function is persistent and it's guaranteed to be valid until call to NXCDisconnect() or NXCSyncObjects(). Function implemented as a full object list scan, so it can take significant time on large object databases.
NXCGetServiceRootObject

Get pointer to Service root object (All Services).

NXC_OBJECT *NXCGetServiceRootObject(NXC_SESSION hSession);
Arguments:

	hSession
	Session handle created by NXCConnect().

Return value:

If the function succeeds, the return value is pointer to NXC_OBJECT structure of service root object.

If the function fails, the return value is NULL. Function can fail if object database is not synchronized (by NXCSyncObjects function) or session handle is invalid.

Remarks:
Pointer returned by this function is persistent and it's guaranteed to be valid until call to NXCDisconnect() or NXCSyncObjects().

NXCGetTemplateRootObject

Get pointer to template root object (Templates).

NXC_OBJECT *NXCGetTemplateRootObject(NXC_SESSION hSession);
Arguments:

	hSession
	Session handle created by NXCConnect().

Return value:

If the function succeeds, the return value is pointer to NXC_OBJECT structure of template root object.

If the function fails, the return value is NULL. Function can fail if object database is not synchronized (by NXCSyncObjects function) or session handle is invalid.

Remarks:
Pointer returned by this function is persistent and it's guaranteed to be valid until call to NXCDisconnect() or NXCSyncObjects().

NXCGetTopologyRootObject

Get pointer to topology root object (Entire Network).

NXC_OBJECT *NXCGetTopologyRootObject(NXC_SESSION hSession);
Arguments:

	hSession
	Session handle created by NXCConnect().

Return value:

If the function succeeds, the return value is pointer to NXC_OBJECT structure of topology root object.

If the function fails, the return value is NULL. Function can fail if object database is not synchronized (by NXCSyncObjects function) or session handle is invalid.

Remarks:
Pointer returned by this function is persistent and it's guaranteed to be valid until call to NXCDisconnect() or NXCSyncObjects().

NXCUnbindObject

Unbind one object from another.

DWORD NXCUnbindObject(NXC_SESSION hSession,

 DWORD dwParentObject,

 DWORD dwChildObject);
Arguments:

	hSession
	Session handle created by NXCConnect().

	dwParentObject
	Unique identifier of parent object.

	dwChildObject
	Unique identifier of child object.

Return value:

If the function succeeds, the return value is RCC_SUCCESS.

If the function fails, the return value is one of the client library error codes (see Error Codes section for detailed information).

NXCWakeUpNode

Send wakeup request („magic packet”) to node.

DWORD NXCWakeUpNode(NXC_SESSION hSession,

 DWORD dwObjectId);
Arguments:

	hSession
	Session handle created by NXCConnect().

	dwObjectId
	Unique object identifier.

Return value:

If the function succeeds, the return value is RCC_SUCCESS.

If the function fails, the return value is one of the client library error codes (see Error Codes section for detailed information).

Remarks:
You can specify either node or interface object in call to this function. If you specify interface, wake-on-LAN packet will be sent exactly to this interface. If you specify node, server will find first appropriate interface for sending wake-on-LAN packet to.
Alarm Management
NXCAcknowlegeAlarm
Acknowlege alarm.

DWORD NXCAcknowlegeAlarm(NXC_SESSION hSession,

 DWORD dwAlarmId);
Arguments:

	hSession
	Session handle created by NXCConnect().

	dwAlarmId
	Unique alarm’s identifier.

Return value:

If the function succeeds, the return value is RCC_SUCCESS.

If the function fails, the return value is one of the client library error codes (see Error Codes section for detailed information).

NXCDeleteAlarm

Delete alarm from the system.

DWORD NXCDeleteAlarm(NXC_SESSION hSession,

 DWORD dwAlarmId);
Arguments:

	hSession
	Session handle created by NXCConnect().

	dwAlarmId
	Unique alarm’s identifier.

Return value:

If the function succeeds, the return value is RCC_SUCCESS.

If the function fails, the return value is one of the client library error codes (see Error Codes section for detailed information).

NXCLoadAllAlarms

Load alarms from the server.

DWORD NXCLoadAllAlarms(NXC_SESSION hSession,

 BOOL bIncludeAck

 DWORD *pdwNumAlarms,

 NXC_ALARM **ppAlarmList);
Arguments:

	hSession
	Session handle created by NXCConnect().

	bIncludeAck
	TRUE if server should include acknowleged alarms into sent alarms list.

	pdwNumAlarms
	Pointer to DWORD variable which will receive number of received alarms.

	ppAlarmList
	Pointer to pointer to dynamically created array of alarms. pdwNumAlarms indicates number of elements in this array.

Return value:

If the function succeeds, the return value is RCC_SUCCESS.

If the function fails, the return value is one of the client library error codes (see Error Codes section for detailed information).

Remarks:
You should destroy received alarm list with free() call when you no longer need it.
NXC_ALARM Structure
NXC_ALARM structure holds information about alarm. It is defined as follows:
typedef struct

{

 DWORD dwAlarmId;

 DWORD dwTimeStamp;

 DWORD dwSourceObject;

 DWORD dwSourceEventCode;

 QWORD qwSourceEventId;

 TCHAR szMessage[MAX_DB_STRING];

 TCHAR szKey[MAX_DB_STRING];

 WORD wSeverity;

 WORD wIsAck;

 DWORD dwAckByUser;

} NXC_ALARM;
Members:

	dwAlarmId
	Unique alarm’s identifier.

	dwTimeStamp
	Alarm’s timestamp as returned by time() function.

	dwSourceObject
	Identifier of alarm’s source object.

	dwSourceEventCode
	Code of originating event.

	qwSourceEventId
	Unique identifier of originating event.

	szMessage
	Alarm’s message.

	szKey
	Alarm’s auto-acknowlegement key.

	wSeverity
	Severity code. Possible codes are:

SEVERITY_NORMAL

SEVERITY_WARNING

SEVERITY_MINOR

SEVERITY_MAJOR

SEVERITY_CRITICAL

	wIsAck
	Acknowlegement flag: 0 if alarm is active, 1 if alarm is acknowleged.

	dwAckByUser
	Identifier of user who was acknowleged the alarm.

Error Codes
Most of the library functions return common error code to identify success or failure reason. The following table contains all possible error codes with detailed explanation.
	RCC_SUCCESS
	Operation was completed successfully.

	RCC_COMPONENT_LOCKED
	Open or lock operation failed because requested component already locked by other session.

	RCC_ACCESS_DENIED
	Access to object or component denied because user doesn’t have required access rights. This code also can be reurned by NXCConnect if provided login name or password is invalid.

	RCC_INVALID_REQUEST
	???

	RCC_TIMEOUT
	Operation was timed out.

	RCC_OUT_OF_STATE_REQUEST
	Request sent to server is out of state. Normally, getting this error code means a bug in the client library or client and server version mismatch.

	RCC_DB_FAILURE
	Requested operation was failed because of backend database failure. This error code may indicate a bug in the server code (mailformed SQL request).

	RCC_INVALID_OBJECT_ID
	Supplied object identifier is invalid (there are no object with this identifier).

	RCC_ALREADY_EXIST
	Creation request was failed because entity with given name already exist. This error code can be returned only when creating entities which require unique names (such as users).

	RCC_COMM_FAILURE
	Communication failure.

	RCC_SYSTEM_FAILURE
	Server cannot complete requested operation because of operating system error. Possible causes are insufficient memory and file I/O errors.

	RCC_INVALID_USER_ID
	Supplied user identifier is invalid (there are no user with this identifier).

	RCC_INVALID_ARGUMENT
	Argument supplied to function is invalid.

	RCC_DUPLICATE_DCI
	Unable to add new data collection item (DCI) to node because node already has DCI with same name.

	RCC_INVALID_DCI_ID
	Supplied data collection item (DCI) identifier is invalid (there are no DCI with this identifier).

	RCC_OUT_OF_MEMORY
	Operation cannot be completed because client system is out of memory.

	RCC_IO_ERROR
	Operation cannot be completed because of I/O error on client system.

	RCC_INCOMPATIBLE_OPERATION
	Requested operation cannot be performed on object class. For example, attempt to bind any object to interface object will return this error code.

	RCC_OBJECT_CREATION_FAILED
	Server was unable to create new object.

	RCC_OBJECT_LOOP
	Object binding failed because binding loop was detected.

	RCC_INVALID_OBJECT_NAME
	Supplied object name is invalid (contains invalid characters or is too long).

	RCC_INVALID_ALARM_ID
	Supplied alarm identifier is invalid (there are no alarm with this identifier).

	RCC_INVALID_ACTION_ID
	Supplied action identifier is invalid (there are no action with this identifier).

	RCC_OPERATION_IN_PROGRESS
	Operation still in progress. This error code shold never be returned by any of library functions and is used only in responce messages from server.

	RCC_DCI_COPY_ERRORS
	Copying of one or more data collection items was failed.

	RCC_INVALID_EVENT_CODE
	Supplied event code is invalid (there are no event with this code).

	RCC_NO_WOL_INTERFACES
	Server was unable to find an interface suitable for sending Wake-on-LAN packet to.

	RCC_NO_MAC_ADDRESS
	Unable to send Wake-on-LAN packet to interface because interface doesn’t have MAC address (or server doesn’t know it).

	RCC_NOT_IMPLEMENTED
	Requested operation is not implemented in the server.

	RCC_INVALID_TRAP_ID
	Supplied trap configuration record identifier is invalid (there are no trap configuration record with this identifier).

	RCC_DCI_NOT_SUPPORTED
	Requested data collection item (DCI) is not supported by target agent.

	RCC_VERSION_MISMATCH
	Connection with the server cannot be established because client and server versions are mismatch.

	RCC_NPI_PARSE_ERROR
	Error parsing NPI (NetXMS Package Information) file.

	RCC_DUPLICATE_PACKAGE
	Attept to install package which is already installed on server (i.e. has same name, target platform, and version).

	RCC_PACKAGE_FILE_EXIST
	Attemt to install package which data file already exist on server.

	RCC_RESOURCE_BUSY
	Requested resource is busy.

	RCC_INVALID_PACKAGE_ID
	Supplied package identifier is invalid.

	RCC_INVALID_IP_ADDR
	Supplied IP address is invalid.

	RCC_ACTION_IN_USE
	Action cannot be deleted because it’s used in event processing policy.

	RCC_VARIABLE_NOT_FOUND
	Requested variable not found in user’s profile.

	RCC_BAD_PROTOCOL
	Server uses incompatible version of communication protocol.

	RCC_ADDRESS_IN_USE
	

	RCC_NO_CIPHERS
	

	RCC_INVALID_PUBLIC_KEY
	

	RCC_INVALID_SESSION_KEY
	

	RCC_NO_ENCRYPTION_SUPPORT
	

	RCC_INTERNAL_ERROR
	

	RCC_EXEC_FAILED
	

	RCC_INVALID_TOOL_ID
	

	RCC_SNMP_ERROR
	

	RCC_BAD_REGEXP
	

	RCC_UNKNOWN_PARAMETER
	

	RCC_FILE_IO_ERROR
	

	RCC_CORRUPTED_MIB_FILE
	

	RCC_TRANSFER_IN_PROGRESS
	

	RCC_INVALID_LPP_ID
	

	RCC_INVALID_SCRIPT_ID
	

	RCC_INVALID_SCRIPT_NAME
	Supplied script name is invalid.

	RCC_UNKNOWN_MAP_NAME
	Supplied map name is not known to server.

	RCC_INVALID_MAP_ID
	Supplied map ID is invalid.

	RCC_ACCOUNT_DISABLED
	User cannot be logged in because user's account is disabled.

	RCC_NO_GRACE_LOGINS
	User cannot be logged on because number of remaining grace logins is 0.

- 18 -

